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8 Chapter 1. Introdução / Introduction

1. Introdução / Introduction

Este material é uma compilação dos trabalhos apre-
sentados no âmbito dos Seminários do PPG-EM em
2015. Foram 17 trabalhos apresentados em 11 dias
de seminário. A temporada 2015 de seminários foi
inaugurada com uma análise, feita pelo Prof. Norberto
Mangiavacchi, da obra de Gaudí sob o ponto de vista
da mecânica dos fluidos.
Dos 17 trabalhos, cinco são da comunidade cientí-
fica externa, o que contribuiu para o estreitamento de
parcerias e expansão do campo de discussões técni-
cas do programa. Cabe também ressaltar a valiosa
contribuição dos dois trabalhos de pesquisadores do
Instituto de Matemática e Estatística da UERJ.
Esta compilação contém o resumo de cada um dos 17
trabalhos, dos quais 14 são apresentados em texto de
duas páginas (artigos compactos).
O idioma selecionado para os textos técnicos foi o in-
glês devido ao caráter internacional desta publicação e
a amplitude de divulgação do mesmo. Mais do que isso,
acreditamos que a interação com grupos de pesquisas
alinhados ao PPG-EM, tanto brasileiros quanto inter-
nacionais, é pré-requisito para alcançarmos o nível de
excelência que perseguimos, tendo o idioma inglês
como ferramenta para este objetivo.
O PPG-EM deseja intensificar interação com
pesquisadores da UERJ e de outras universidades e
institutos, com o objetivo final de gerar conhecimento
e contribuir para o desenvolvimento científico e tec-
nológico brasileiro e melhorar a qualidade de vida
de nossa sociedade. Acreditamos que este deve ser
sempre o principal desejo de todo pesquisador: fazer
ciência para que pessoas vivam melhor.

————————————————-
Prof. Manoel Antônio F. C. Filho

(Coordenador do PPG-EM)

This material is a compilation of the works presented
at the PPG-EM Seminar in 2015 season. Seventeen
works were presented in 11 seminar sessions. The
2015 season was opened with an analysis made by Prof.
Norberto Mangiavacchi of Gaudí’s legacy, through the
lens of fluid mechanics.
Among the 17 works presented, five came from out-
side UERJ, which contributed to the strengthening of
partnerships and expansion of technical discussions. It
is worth to mention the valuable contribution of two
work from the Institute of Mathematics and Statistics
of UERJ.
This compilation contains the abstract of each of the 17
works, from which 14 are also presented in two pages
texts (short papers).
The english language was selected for the technical
texts due to the international nature of such a publica-
tion and its amplitude of disclosure. More than that,
we believe that the interaction between international
research groups and PPG- EM is a prerequisite to reach
such a level of excellence that we pursue, having the
english language as a tool for achieving such a goal.
PPG-EM seeks to increase interaction with researcher
from UERJ and other universities and institutes,
aiming at generating knowledge and contributing
for technical and scientific development in Brazil, to
improve life quality of our society. We believe that
this should always be the main desire of every re-
searcher: to make science so that people can live better.

————————————————-
Prof. José Brant de Campos

(Vice-coordenador do PPG-EM)

 



2. Resumos / Abstracts

Neste capítulo são apresentados os resumos dos 17 trabalhos científicos que fizeram parte dos
Seminários do PPG-EM em 2015. Os resumos estão organizados segundo a data de apresentação.

This chapter presents the abstracts of the 17 scientific works that participated in the PPG-EM
Seminars in 2015. Abstracts are organized according to the date of presentation.

2.1 Gaudí, The Forms That Express Genius

Norberto Mangiavacchi
norberto@uerj.br

FEN / UERJ

Natural phenomena like hydrodynamic instabilities, bucking of structures, pattern formation in
many physical systems, two-phase flows with moving interfaces and waves, to name a few, produce
interesting shapes for their aesthetic impression and for their physical properties. Looking at the
artistic creations of Spanish Catalan architect Antoni Gaudí i Cornet we recognize, as in a déjà
vu, some of these geometric forms. His work, of personal and creative character, develops from
neo-Gothic and Oriental influences through Modernisme, into an organic style inspired by natural
forms. “Everything comes from the Great Book of Nature” he had said. Examples of Gaudí
architectural creations, that illustrate his acute observation of nature, and the genial combination of
a positive aesthetic and emotional response with very effective technical solutions in every detail
will be presented, showing their association to physical and mathematical principles.
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2.2 Linear Stability Analysis of Fingering in Convective Dissolution in Porous Me-
dia

Rachel Lucena
rachel.lucena@gmail.com

PPG-EM / UERJ

Fingering refers to hydrodynamic instabilities of deforming interfaces into fingers during the dis-
placement of fluids in porous media. The phenomenon occurs in a variety of applications, including
CO2 sequestration techniques, secondary and tertiary crude oil recovery, fixed bed regeneration
chemical processing, hydrology, filtration, liquid chromatography, and medical applications, among
others. We consider the problem of buoyancy-driven fingering generated in porous media by the
dissolution of a fluid layer initially placed over a less dense one in which it is partially miscible.
The focus is on the lower layer only where the convective dissolution dynamics takes place. A 2D
time dependent numerical simulation is performed, assuming that the flow is governed by Darcy’s
law, along with the Boussinesq approximation to account for buoyancy effects introduced by a
concentration dependent density. The viscosity is assumed as constant. A vorticity-stream function
formulation is adopted to solve the hydrodynamic field.

2.3 Passive Cooling System

Leon Lima
matosleon@gmail.com

PPG-EM / UERJ

Passive Cooling Systems (PCS’) are engineering solutions to perform the function of heat transfer
using the temperature difference between hot and cold sources to generate the driving force. Because
they don’t need active components to operate, PCS’ have the advantages of lower costs and higher
reliability. Nowadays, PCS’ find large applicability in cooling functions of electronic components
and in the nuclear industry. PCS’ can be classified as single-phase and two-phase systems. There is
a third class which operate at very high temperatures and pressures: the supercritical systems, which
are single-phase with characteristics of two-phase systems. Nevertheless, independent of the type,
all PCS’ have the disadvantage of being subjected to instabilities, which may lead to inadmissible
levels of vibrations and generate high temperature spots in the circuit. Although two-phase systems
are much more susceptible to instabilities, there are conditions in which single-phase systems can
be unstable.

2.4 1D Modeling of Particle Transport in Turbulent Channel Flow

Apoena Calil
Gabriel Meletti
apoenacalil@gmail.com

gabrielmeletti@gmail.com

PPG-EM / UERJ

In this work, the physical processes responsible for the transport of particles in regular channels
for turbulent flow regimes are modeled. Zero-equation RANS model was employed. Effects along
the vertical direction (channel’s depth) was neglected and the flow was assumed to be completely
developed, allowing for a 1D approach. Particle transport was described by the BBO equation,
through a Lagrangian approach, considering drag, lift, virtual mass and gravity as the forces which
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act on the particles. One-way coupling between flow and particles was considered, meaning that
only the flow affected the particles, with no feedback from particles to the flow. Results for the flow
profile showed good results and, although preliminary, results for the particle transport showed
physical coherence, in accordance to the applied forces.

2.5 Nano-patterning of surfaces by ion sputtering - numerical study of the
Kuramoto-Sivashinsky equation

Eduardo Vitral
eduardo.vitral@gmail.com

PPG-EM / UERJ

Ion beam sputtering is one important technology which operates in nonequilibrium conditions
and allows the processing of materials and structures outside the limits of the equilibrium thermo-
dynamics. Our effort aims toward the implementation of a numerical scheme to solve a model
proposed to the ion beam sputtering erosion. The phenomenon consists on the ionic bombardment
of a surface, spontaneously developing a well-ordered periodicity over a large area under certain
conditions. This physical process responsible for the formation of periodic structures on the
previously surface is called sputtering. Depending on the energy of the incident ion, a train
of collision event may be established, resulting in the ejection of atoms from the matrix. The
morphology of the surface can drastically change due to these sputtered atoms, being responsible
for the appearance of unexpectedly organized patterns, such as ripples and hexagonal arrays of
nanoholes. In the present endeavor, a finite difference semi-implicit splitting scheme of second
order in time and space is proposed to numerically solve an anisotropic Kuramoto-Sivashinsky
equation subjected to periodical boundary conditions for two dimensional surfaces.

2.6 Stabilized hybridized Finite Element formulations - a new approach

Cristiane Faria
cofaria@ime.uerj.br

IME / UERJ

In linear elasticity problems by using of usual displacement-based finite element methods, we are
able to numerically determine the displacement field directly and the stresses are evaluated by
post-processing. It is well known that standard Galerkin finite element approximations degrade
when the Poisson’s ratio tends to 1/2, corresponding to near incompressible elasticity. Hybrid
methods are characterized by weakly imposing continuity on each edge of the elements through
the Lagrange multipliers. In contrast to DG methods, hybrid formulation allows an element-wise
assembly process and the elimination of most degrees of freedom at the element level resulting a
global system involving only the degrees-of-freedom of the Lagrange multiplier. Typical strategies
are based on the addition of stabilization and symmetrization terms are added to generate a stable
and adjoint consistent formulation allowing greater flexibility in the choice of basis functions
of approximation spaces for the displacement field and the Lagrange multiplier. After this step,
stress approximations with observed optimal rates of convergence are recovered by a local post-
processing of both displacement and stress using the multiplier approximation and residual forms
of the constitutive and equilibrium equations at the element level.
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2.7 Explicit resolution by linear Finite Elements of a system which describes
evolutive viscoelastic flows

Patricia Gomes
patriciadiasgomes@gmail.com

UFF

A three-field finite element scheme designed for solving systems of partial differential equations
governing stationary incompressible flows is presented. It is based on the simulation of a time-
dependent behavior. Once a classical time-discretization is performed, the resulting three-field
system of equations allows for a stable approximation of velocity, pressure and extra stress tensor,
by means of continuous piecewise linear finite elements, in both two and three-dimensional space.
The main advantage of this formulation is the fact that it implicitly provides an algorithm for the
iterative resolution of system non-linearities. We show that it can be employed with advantages, to
the case of newtonian or quasi-newtonian fluids.

2.8 Uncertainties in physical systems: why to quantify and how to model?

Americo Cunha
americo@ime.uerj.br

IME / UERJ

Computational models have been increasingly used in engineering and sciences for design and
analysis of complex physical systems. This increase has taken place due to the versatility and low
cost of a numerical simulation compared to an approach based on experimental analyzes on a test
rig. However, any computational model is subject to a series of uncertainties, due to variabilities on
its parameters and, mainly, because of assumptions made in the model conception that may not be
in agreement with reality. The first source of uncertainty is inherent limitations in measurement
processes, manufacturing etc., while the second source is essentially due to lack of knowledge
about the phenomena observed in the physical system. An increasingly frequent requirement in
engineering is the robust design of a certain component, i.e., with low sensitivity to the variation of
a certain parameter, and this requires the quantification of model uncertainties. In this talk we will
expose the fundamental notions related to the quantification of uncertainties in physical systems
and illustrate the construction of a probabilistic model for uncertainties description in a simplistic
mechanical system.

2.9 Application of Finite Element Method in the study of reactive flows

Alcéstes Oliveira
ade_oliveira@hotmail.com

PPG-EM / UERJ

Finite Element Method (FEM) is employed to the numerical investigation of 1D and 2D reactive
flows with application on determination of concentration profiles of chemical species in continuous
tubular reactors which are degradable in water courses. The problem is modeled by transport
equation subject to transient boundary conditions, as it is in the operation of diversified production
chemical reactors and in non-uniform discharge of pollutants. Keeping the problem within certain
parameters allowed for the application of the Galerkin FEM for spatial discretization and Crack-
Nicolson for time discretization, overcoming stability issues and constituting a new approach for
dealing with natural boundary condition, which can also contribute to increase stability of the
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scheme.

2.10 Solution of incompressible Navier-Stokes equations by projection method
using Integral Transform Technique

Daniel Chalhub
dchalhub@gmail.com

FEN / UERJ

In the present work a new numerical method was developed for solving incompressible Navier-
Stokes Equations (N-S) in transient regime with two-dimensional primitive variables which can
be easily extended to three-dimensions. The methodology is based on Projection Methods and
makes use of a mix approach through the Classical Integral Transform Technique (CITT). Since
the main obstacle in the classical approach of pressure correction is the solution of Poisson’s
equation for pressure (PPE), this work proposes a different approach, using Classical Projection
Method for time advance of N-S and CITT to find dependency of pressure over the discrete velocity
field in a semi-analytical way, using pressure field from the previous time step as a filter. For
comparison means, the Finite Volume Method was also employed, where PPE was solved by the
Gauss-Seidel method. Two variations of the method were proposed: Simple Transform (CITT-ST)
and Double-Transform (CITT-DT).

2.11 Numerical modeling of two-phase flows with moving contact lines

Erik Gros
erik.gros@epfl.ch

Swiss Federal Institute of Technology in Lausanne (EPFL)

Numerical simulation is employed to simulate two-phase flow phenomena using the continuum
method for surface tension modeling. The set of equations are based on the ’one-fluid’ Arbitrary
Lagrangian-Eulerian (ALE) description of the Navier-Stokes equations. These equations are
discretized by the Finite Element method on an unstructured mesh in which the phase boundary is
represented by a set of interconnected elements that are part of the computational mesh, thus a sharp
representation is successfully achieved. The presented modeling will then be used to investigate
two-phase flows with moving contact lines, slug and annular flows in microchannels. These
problems are of great interest for technology applications such as the cooling of microelectronic
devices. The employed formulation, the interface representation, bubble-wall modeling and some
initial results of this Ph.D. thesis will be presented for 2-dimensional Cartesian and axisymmetric
cylindrical coordinates.

2.12 Counter-Current Thermocapillary migration of bubbles in microchannels
using self-rewetting liquids

Robson Nazareth
r.nazareth@ed.ac.uk

University of Edinburgh

A 2D two-phase DNS model has been developed in Ansys CFX. The governing equations are
solved numerically via the finite-volume method. The volume fraction and interface were modeled
employing the volume-of-fluid (VOF) method with a compressive differencing scheme and the
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surface tension force is modeled using the Continuum Surface Force (CSF) formulation. The
model is used to investigate thermocapillary migration of bubbles in microchannels subject to
temperature gradients using self-rewetting fluids. Self-rewetting liquids present a non-linear
(parabolic) temperature dependence of surface tension that create a distinct bubble behaviour
compared with pure liquids like water that has a linear dependence. Bubble dynamics using
self-rewetting liquids in microchannels is the focus of this work and some preliminary results will
be presented.

2.13 Development of a SAXS equipment for nanomaterials characterization

Rauni Coelho
rauni.coelho@gmail.com

FEN / UERJ

With the increase in industry application of nanomaterials, the interest on equipment and techniques
that can support the determination of nanoscale properties is growing. Hence, SAXS (Small
Angle X-Ray Scattering) techniques allow for the analysis of nanomaterials and determine several
parameters such particle size, nanoparticle density and morphology. Usually, X-Ray penetrates
through the sample (transmission mode) and each particle interacts com the X-Ray emitting a
signal, which detected and analyzed. As in any other research field, there are great challenges in
the development of instrumentation for the application of this technique. The challenges in the
present case consist of optics design, based on the platform of a conventional X-Ray diffraction
equipment. The X-Ray beam must have a minimum attenuation and this condition is achieved with
the evacuation of the whole optical path which includes the chamber where the sample and the gas
X-Ray bi-dimensional detector are deposited.

2.14 Comparative analysis between different techniques for porosity measure-
ment applied to high hardness advanced ceramics.

Vinicio Coelho
viniciorj@hotmail.com

PPG-EM / UERJ

The for materials with high mechanical performance has raised interest for the development of the
advanced ceramics with severe applications, as Silicon Carbide (SiC) and Boron Carbide (B4C),
for presenting great mechanical properties. Nevertheless, the porosity is still considered a limiting
issue for the performance of such materials because, beyond certain limits, it reduces mechanical
resistance. Its control is made by means of high cost techniques, computer tomography. The
present study suggests a reconstruction technique for 3D optical microscopy images through Digital
Image Processing of the material, which is previously polished in several depths, with controlled
preparation parameters. The results from this methodology will be compared against tomography
images for quantification of porosity, with the intent to validate the methodology.

2.15 Modeling and simulation of polydispersed multiphase flow

Fabio Santos
fsantos@peq.coppe.ufrj.br

FEN / UERJ
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Polydispersed multiphase flows are present in several natural and industrial processes, and involve
a series of physical phenomena, such as: transfer of mass, momentum and energy. In bubble
column chemical that are used in the biochemical and petrochemical industries, reactor efficiency
significantly depends on interfacial area of the bubbles and the resident time. Therefore, the particle
size distribution (PSD) is a parameter whose behavior is important to control this process. In
material science, the precipitation reaction is another good example of polydispersed multiphase
flow. In this case, reaction happens in a liquid phase with some chemical substances that react
to form a solid with some specific features. The final market value of the crystallized product
is strongly dependent on its PSD. For these reasons, modeling and simulation of polydispersed
multiphase flow is critically important. However, the computational task is very complicated
and demands special models, numerical techniques and algorithms. In this talk, I will present a
computational framework to simulate polydispersed multiphase flows. I will describe models based
on population balance equations (PBE) and their physical meaning. I will be also discussing one of
the suitable numerical methods to couple the solution of PBE with CFD simulations. Finally, I will
show some results, including parallelization of the PBE solution methods using a GPU computing
paradigm.

2.16 Numerical methods for data transfer during remeshing and ALE computa-
tions - application to friction stir welding process with complex geometry

Philippe Bussetta
philippe.bussetta@gmail.com

UNESP

Friction Stir Welding (FSW) is a solid-state joining process during which materials to be joined are
not melted. During the FSW process, the behaviour of the material is at the interface between solid
mechanics and fluid mechanics. A 3D numerical model is presented. This model use advanced
numerical techniques such as the Arbitrary Lagrangian Eulerian (ALE) formulation and remeshing
operation. In both advanced numerical techniques, the method used to transfer information from
one mesh (named the old mesh) to another one (called the new mesh) is an important piece of the
computational process. Two data transfer methods are presented. The first method takes advantage
of the properties of the ALE formalism to minimize the CPU time. The second one is a general
algorithm which can be used during a complete remeshing procedure. Both data transfer methods
are based on a linear reconstruction of the transferred fields over an auxiliary finite volume mesh.
These data transfer procedures are applicable to both nodal values and unknowns computed at the
quadrature points. These two data transfer methods are compared with the simplest transfer method,
which consists of a classical interpolation.

2.17 Recent observation in the transition to turbulence in straight, diverging and
expansion pipe flow

Jorge Peixinho
jorge.m.peixinho@gmail.com

French National Center for Scientific Research

The results of a combined experimental and numerical investigation on the transition to turbulence
in a straight, diverging and expansion pipe flow of circular cross-section will be presented. First,
some results for the flow in straight pipe will be recalled. Then, for diverging and sudden expansion
pipe flow, the effect of the change in cross-section induces the appearance of a recirculation region.



18 Chapter 2. Resumos / Abstracts

Here, at the inlet, a parabolic velocity profile is applied together with a finite amplitude perturbation
to represent experimental imperfections. Initially, at low Reynolds number, the solution is steady.
As the Reynolds number is increased, the length of the recirculation region near the wall grows
linearly. Then, at a critical Reynolds number, a symmetry-breaking bifurcation occurs, where
linear growth of asymmetry is observed. Near to the point of transition to turbulence, the flow
experiences oscillations due to a shear layer instability for a narrow range of Reynolds numbers. At
higher Reynolds numbers the recirculation region breaks into a turbulent state that remains spatially
localised even when the perturbation is removed from the flow. The localised turbulence shows
absence of metastability. Spatial correlation analysis suggests that the localised turbulence in the
gradual expansion possess a different flow structure from the turbulent puff of uniform pipe flow.
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GAUDÍ, THE FORMS THAT EXPRESS GENIUS
Author: Norberto Mangiavacchi1 norberto@uerj.br

1
State University of Rio de Janeiro

January 21, 2015
PPG-EM Seminars: season 2015

www.ppg-em.uerj.br

Keywords: Natural forms, Nature, physical phe-

nomena, geometric, mathematical principles, architec-
ture.

1 Introduction

As researchers dedicated to understand and explain
physical phenomena, we frequently encounter geomet-
ric forms that are particularly appealing to our senses
and intellects. Hydrodynamic instabilities, bucking of
structures, pattern formation in many physical systems,
two-phase flows with moving interfaces, waves, to name
a few, produce interesting shapes for their aesthetic
impression and for their physical properties. Looking
at Spanish Catalan architect Antoni Gaudí i Cornet
artistic creations we recognize, as in a déjà vu, some of
the same geometric forms. Gaudí’s works reflect an indi-
vidualized and distinctive style. Under the influence of
neo-Ghothic art and Oriental techniques, Gaudí became
part of the Modernista movement which was reaching
its peak in the late 19th and early 20th centuries. His
work transcended mainstream Modernisme, culminat-
ing in an organic style inspired by natural forms. The
forms created and employed by Gaudí in his architec-
tural creations are inspired by an acute observation of
the nature. “Everything comes from the Great Book of
Nature” he had said.

The works of Gaudí materialize from geometric ele-
ments that have much in common with those found in
the investigation of problems faced by researchers in
applied science. Examples range from simple forms like
the catenary curve and catenoid (arising by rotating a
catenary curve about its directrix), to complex patterns
and fractals common in dynamic systems. We know how
similar di�erential equations seem to appear recurrently
in problems very di�erent from the physical perspective
and very similar from the mathematical point of view,
giving origin to patterns, shapes and behaviors, in space
and time, that are conspicuous. Anthropomorphic, an-
imal and vegetal shapes, as bones, shells, leaves, are
derived from solutions of problems based in physical
laws. These entities exist in the universe since its origin,
following nature and human development, thus impreg-
nating our collective unconscious and making part and
dictating the behavior of our own physical stu�. It is
not surprising that humans have an emotional response
to natural elements. Examples of Gaudí thoughts and
architectural creations, that illustrate his acute observa-

tion of nature, and the genial combination of a positive
aesthetic and emotional response with very e�ective
technical solutions in every detail, will be presented. In
these examples we will point to some connections of
the geometric forms with physical phenomena and their
mathematical description.

2 Light

Architecture is the arrangement of light; sculpture is
the play on light.

“Light achieves maximum harmony at an inclination
of 45 degrees, since it resides on objects in a way that
is neither horizontal nor vertical. This can be consid-
ered medium light, and it o�ers the most perfect vision
of objects and their most exquisite nuances. It is the
Mediterranean light. Paraboloids, hyperboloids and he-
licoids, constantly varying the incidence of the light, are
rich in nuances themselves, which make ornamentation
and even modeling unnecessary”

3 Waves, linear and non-linear, free-surfaces

and interfaces, dynamic systems, patterns

and fractals

“Form does not necessarily follow function.”

“Nothing is invented, for it’s written in nature first.
Anything created by human beings is already in the
great book of nature.”

“Everything comes from the great book of nature.”

“Originality implies a return to the origins, original is
returning to the simplicity of the first solutions.”

“The creation continues incessantly through the media
of man. But man does not create... he discovers.”

4 Conclusion

“Men may be divided into two types: men of words and
men of action. The first speaks; the latter act. I am of
the second group. I lack the means to express myself
adequately. I would not be able to explain to anyone
my artistic concepts. I have not yet concretized them.
I never had time to reflect on them. My hours have
been spent in my work.”

Not all artists are so inspired by nature as Gaudí. We,
as scientist, can draw inspiration in Gaudí’s example.

1
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Figure 1: Left and center: La Sagrada Familia. Shades of light and geometrical forms: The catenary, the
catenoid, ruled surfaces and fractals. Right: Casa Batll. Helicoids and catenaries. Gaudí took care of
every detail of all structural and ornamental elements, always making sure that his constructions had
good lighting and ventilation. His study of nature translated into his use of ruled geometrical forms
such as the hyperbolic paraboloid, the hyperboloid, the helicoid and the cone. Gaudí found abundant
examples of ruled surfaces in nature, for instance in plants, shells and bones. These forms are at the
same time functional and aesthetic, and Gaudí discovered how to adapt the language of nature to the
structural forms of architecture.

Figure 2: Top: The roof of La Pedrera, showing wavy shapes, some typical of buckling. Left: Interior of
Casa Batllo. showing surfaces found hydrodynamics, and employing adaptive tessellation of complex
surfaces. Right: Roof of Casa Batlló: textures, that enhance the perception of forms, are found in
many nonlinear dynamic systems, like in pattern formation and nonlinear surface waves.
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1 Introduction

Fingering refers to hydrodynamic instabilities of deforming in-

terfaces into fingers during the displacement of fluids in porous

media. These instabilities are closely linked to changes in vis-

cosity or density between the di�erent layers or within a single

phase containing a solute invariable concentration that a�ects

the fluid density or viscosity (Homsy [3]). The phenomena oc-

curs in a variety of applications, including CO2 sequestration

techniques, secondary and tertiary crude oil recovery, fixed bed

regeneration chemical processing, hydrology, filtration, liquid

chromatography, and medical applications, among others. In

fact, the phenomena are expected to occur in di�erent fields

of science and technology, in which flows in porous media are

present.

We consider the problem of buoyancy-driven fingering gen-

erated in porous media by the dissolution of a fluid layer ini-

tially placed over a less dense one in which it is partially misci-

ble. The focus is on the lower layer only where the convective

dissolution dynamics takes place.

A 2D time dependent numerical simulation is performed,

assuming that the flow is governed by Darcy’s law, along with

the Boussinesq approximation to account for buoyancy e�ects

introduced by a concentration dependent density. The viscos-

ity is assumed as constant. A vorticity-stream function formu-

lation is adopted to solve the hydrodynamic field (Almarcha

et al. [1], Budroni et al. [2]).

1.1 Model equations

The equations describing the dynamics in the flow field that

governing the evolution of the concentration field are:

�2� = ��z (1)

�z = R
�c

�x
(2)

Dc

Dt
= D�2c, (3)

where: � is the stream function (u = (��/�y,���/�x)), �z

is the vorticity (�z = �2�), R = ��giz , c is the concentra-

tion field and D is the di�usion coe�cient. Equation 1 is the

vorticity equation, Eq. 2 is Darcy’s Law for the vorticity and

Eq. 3 is the concentration transport equation.

2 Linear Stability Analysis (LSA) of the Base

State

The base state of the problem is the time dependent solution

of Eq. 3 of the concentration field in absence of any flow:

c̄(y, t) = 1� erf

�
y

2
�
t

�
. (4)

On the basis of Eqs. 1-3, a LSA can be performed to obtain

dispersion curves giving the growth rate of the perturbations

as a function of the wavenumber.

The LSA consists in adding perturbations to the base state

solution characterized by the concentration profile (4) and

�
c

�

�
=

�
c̄

0

�
(y, t) +

�

�
c̃

i�̃

k

�

� (y) exp(�t+ ikx), (5)

where i2 = �1, k is the wavenumber of the perturbation and �

is the growth rate. The linearised evolution equations for the

disturbances c̃ and �̃ are thus:

�̃yy � k2�̃ = k2c̃ (6)

�c̃+ �̃c̄y = c̃yy � k2c̃ (7)

Boundary conditions for the concentration and stream

function perturbations c̃ and �̃ are thus:

y = 0 : c̃ = 0, �̃ = 0

y � � : c̃ � 0, �̃ � 0.

Upon defining Dn = dn/dyn, we rewrite Eq. 6:
�
D2 � k2

�
�̃ =

k2c̃ and inversely: �̃ =
�
D2 � k2

��1
k2c̃.

Upon replacing �̃ in Eq. 7 and rearranging terms we arrive
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at an eigenvalue-eigenfunction equation for the rate of growth

� and associated vertical concentration profile in the form:
��
D2 � k2

�
�

�
D2 � k2

��1
k2Dc̄

�
c̃ = �c̃.
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Figure 1: Dispersion curves.

Figure 1 shows the dispersion curves of normal mode per-

turbations of the base state, numerically obtained for several

times. All perturbations are damped for t < 55.59. A bifurca-

tion occurs at t = 55.59 when the first perturbation becomes

marginally stable with a wavenumber k = 0.06192.

2.1 Deployment of instabilities with variable

and frozen base state

This section reports the experiments conducted to evaluate the

rate of growth of modes with the wavelength � associated to

k0 = 0.06192. We denote this mode as “mode 4”. Initial con-

dition used in the experiments consisted of the base state at

t = 252 plus perturbation with this wavenumber.

We investigate the deployment of instabilities with a time

dependent base state by numerically integrating Eqs. 1-3.

We also investigate the rate of growth of perturbations with

frozen base state. In order to extract the amplitude of mode 4

we adopted the following procedure:

1. The base state is subtracted from result of the numerical

result of integration, both at the same time;

2. The result is integrated along the y direction, followed

by evaluation of the Fourier transform of the result, giv-

ing the sought amplitude.
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Figure 2: A comparison between the evolution of the am-
plitude of mode 4 with frozen base state (curves
with marks) and evolving base state (curves without
marks) for initial amplitudes as given in the figure.

Fig. 3 presents a plot of the rate of growth � as a function

of time with frozen base state (curves with marks) and evolv-

ing base state. This figure confirms that the rate of growth

obtained from the numerical integration of the evolution equa-

tions matches the “exact” value from the linear stability anal-

ysis during the stages of linear growth.
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Figure 3: A comparison between the evolution of the rate of
growth of mode 4 with frozen base state (curves
with marks) and evolving base state (curves with-
out marks) with the di�erent initial amplitudes a
of the perturbation (mode 4). �1fp and �1nfp re-

fer to amplitude a = 2 � 10�1, �2fp and �2nfp to

amplitude a = 2 � 10�2, �3fp and �3nfp to ampli-

tude a = 2 � 10�5, �4fp and �4nfp to amplitude

a = 2� 10�6.

3 Conclusions

We observed that when integrating the evolution equation

starting from the base state plus a perturbation a minimum

initial level of this one is required to obtain the linear growth

of the linear stability analysis in the first stages of evolution.

If this minimum is not included in the initial condition a de-

viation occurs at the first stages of the linear growth, due to

noise introduced by the grid.

As we allow the base state to evolve we observe a cer-

tain deviation in the rate of growth of the amplitude of modes

when comparing with � obtained from the linear analysis, due

to nonlinear e�ects.

We conclude then that the increase in the interface gradi-
ent enhances dissolution of CO2.
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1 Introduction

Passive Cooling Systems (PCS’) are engineering so-

lutions to perform the function of heat transfer us-

ing the temperature di�erence between hot and cold

sources to generate the driving force. They are, there-

fore, autonomous systems, independent of external

energy sources. Most of the designs consists of heat

exchangers connected by a hydraulic circuit. Because

they don’t need active components to operate, PCS’

have the advantages of lower costs and higher reli-

ability. Nowadays, PCS’ find large applicability in

cooling functions of electronic components and in the

nuclear industry. Indeed, the high reliability make

these systems particularly relevant to nuclear instal-

lations, especially after the events of Fukushima1

PCS’ can be classified as single-phase and two-phase

systems. There is a third class which operate at very

high temperatures and pressures: the supercritical

systems, which are single-phase with characteristics

of two-phase systems. Many fossil fuel fired power

plants use supercritical water because of the high e�-

ciency of the thermal cycle. While conventional cycles

1Nuclear accident caused by a strong seismic event succeeded by a tsunami in the east coast of Japan.
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Figure 1: Instability types according to Prasad et al. [3].
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may have e�ciencies up to 36%, supercritical cycles

may provide up to 50% e�ciency [4]. Additionally,

the design of passive systems with supercritical flu-

ids is favored by the high density gradients close to

pseudo-critical points2. One of the design of Genera-

tion IV nuclear reactors3 consists of a reactor cooled

by supercritical water, possibly in a passive system.

Nevertheless, independent of the type, all PCS’ have

the disadvantage of being subjected to instabilities,

which may lead to inadmissible levels of vibrations

and generate high temperature spots in the circuit.

Although two-phase systems are much more suscep-

tible to instabilities, there are conditions in which

single-phase systems can be unstable.

2 Stability in a PCS

The interplay between buoyancy forces and friction

drag after a perturbation may generate increasing os-

cillations in the system’s transient properties. In this

case, the PCS is unstable and the instability is a dy-

namic type one. In fact, instabilities of cooling cir-

cuits can be of many di�erent types. Boure et al. [1] is

one of the first works to provide a classification of in-

stabilities in two-phase systems (including active sys-

tems) and is the basis for the classification used today

by many authors for natural circulation loops, both

single and two-phase. Their work presents 10 types of

instabilities, divided into two main classes: static and

dynamic instabilities. Prasad et al. [3] identified the

types studied by Boure et al. [1] as thermo-hydraulic

instabilities, and added two other groups aside this:

the instabilities associated to control systems and the

ones associated to neutron kinetics (see fig. 1).

2.1 Stability in a single-phase PCS

In a work published on 1975, Creveling et al. [2] es-

tate that, in previous works, instabilities in single-

phase natural circulation loops were only reported for

systems operating at conditions close to the pseudo-

critical point. They mention, however, analytical re-

sults published between 1966 and 1967 which con-

cluded that there are conditions under which subcrit-

ical single-phase systems present instabilities. Moti-

vated by this evidence, Creveling et al. [2] were the

first work to show experimental results with unstable

behavior in a conventional (subcritical) single-phase

natural circulation loop. Today there is a wide knowl-

edge about instabilities in single-phase systems. For

example, Vijayan et al. [5] estate that stability in such

systems depend on the

• Grashof and Stanton numbers4;

• flow regime;

• heater and cooler orientation;

• length scales of the loop (height, total length,

heater and cooler lengths etc.).

There are many experimental and numerical results

available today which reproduce instabilities, both

static and dynamic, in several geometries of conven-

tional single-phase natural circulation loops. Natural

convection flows without phase change in closed cir-

cuits occur in many types of nuclear installations, like

in most of pressurized reactors in case of loss of re-

actor coolant pumps, and it is also the type of flow

during start up of boiling water reactors.
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1 Introduction

In this work, the physical processes responsible for the
transport of particles in regular channels for turbulent
flow regimes are modeled. Particle transport is a rele-
vant area of knowledge with many applications, such as
the transport of sand or para�n in pipelines and blood
flow. To account for the turbulent e�ects, the “zero-
equation” RANS model was employed, which makes
use of the concept of turbulent viscosity proposed by
Boussinesq. E�ects along the vertical direction (chan-
nel’s depth) was neglected and the flow was considered
completely developed, allowing for a 1D approach.

Particle transport was described by the BBO equation
[1], through a Lagrangian approach, considering drag,
lift, virtual mass and gravity as the forces which act on
the particles.

The flow followed a Eulerian approach, using centered fi-
nite di�erences for space domain discretization and both
explicit and implicit formulations were implemented.
One-way coupling between flow and particles was consid-
ered, meaning that only the flow a�ected the particles,
with no feedback from particles to the flow.

Results for the flow profile showed good results and,
although preliminary, results for the particle transport
showed physical coherence, in accordance to the applied
forces.

2 Flow modeling

Taking into account that the flow is developed and
incompressible, the RANS equations that describe the
flow, already incorporating the concept of Boussinesq
viscosity, is given by

momentum:

�u

�t

= �1
�

�p

�x

+ �

�y

�
(�m + �t)

�u

�y

�
(1)

continuity:
�u

�x

= 0 (2)

where u is de longitudinal velocity component, t is time,
� is the density of the fluid, p is pressure, x and y are
the longitudinal and orthogonal coordinates of the chan-
nel domain, �m is the kinematic viscosity of the fluid,

designated as “molecular viscosity” in opposition to the
turbulent, or apparent, viscosity, which results from the
turbulence. Note that u and p actually represent the
mean values of velocity and pressure fields.

The Prantdl mixing length model (algebraic model)
was used for characterization of the turbulent viscosity,
which means that

�t = l

2

c

����
�u

�y

���� (3)

where lc is the mixing length, defined as

lc = �y, para y � � (4a)
lc = ��, para y > � (4b)

with � as Von Kármán’s constant and � as the boundary
layer thickness. Motion equations are solved using Cen-
tered Finite Di�erences for space discretization, making
use of a staggered grid.

3 Particles

From the point of view of the model, particles are
transported through a Lagrangian approach, so that
an Eulerian-Lagrangian formulation characterizes the
fluid-particles modeling. One-way coupling between
flow and particles was considered, which means that
particles do not make influence on the flow. The trans-
port is modelled by a form of the BBO equation, taking
into account four forces: drag, lift, virtual mass and
gravity. For more details concerning the BBO equation,
please refer to [1], section 4.3. The influence of the
turbulent regime on the particles is simulated by means
of the so-called discrete eddy model, which applies a
random perturbation into the velocity components of
the particles based on the magnitude of the turbulent
viscosity.

The four forces taken into account in the model are
expressed by the following equations:

drag force FD:

FD = 3�µD(u � vp) (5)

lift force FL:

FL = 1.61�
µ�pD

2 � u � vp � du

dy

����
du

dy

����
�0.5

(6)

1
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added mass force FAM :

FAM = 1
2M

dvp

dt

(7)

gravity force FG:

FG = Mg (8)

where �p, D and vp are respectively the particle’s den-
sity, diameter and velocity vector; u is velocity vector
of the flow. Both u and vp have two components in the
present model.

The trajectory of the particles are computed by solving

�F = FD + FL + FAM + FG = M

dvp

dt

(9)

which is a form of the BBO equation. An additional
perturbation v

�
p is applied on the particles’ velocity

due to turbulence contributions. The perturbation is
defined by the discrete eddy model, using Gaussian
distribution to account for the random characteristic,
i.e.

v

�
p = 4�lc

�
2/3

����
�u

�y

���� (10)

The factor � is computed by a Monte Carlo like iterative
procedure, in which two random values � and fR are
generated, with � � [�0.5, 0.5] and fR � [0, 1/

�
2�]. If

fR � f , where f = 1/

�
2� exp(�0.5�

2) (Gaussian func-
tion), then � is the factor used to compute the velocity
fluctuation. Otherwise, a new pair of random values
� and fR is generated, and the procedure is repeated
until the condition fR � f is satisfied. Equation 9 is
a linear ODE that can be analytically solved for vp.
Thus, the new position x

n+1 of each particle in the time
step n + 1 is computed in a Lagrangian way using the
turbulent particle velocity vp + v

�
p, i.e.,

x

n+1

p = x

n
p + (vp + v

�
p)�t (11)

where �t is the time increment.

4 Results

Three results will be presented: two velocity profiles,
one for steady laminar and another for steady turbulent
regime, and a frame from one simulation of particles
transport. Laminar profile is obtained from solving eq.1
with �u/�t = 0 and �t = 0. The numerical results were
compared to analytical solution. Figure 1 shows the
comparison for Re = 103 with a mesh of 80 nodes.

In fig. 2, the non-dimensional turbulent boundary layer
is shown, for Re = 105 and a mesh of 800 nodes. Com-
parison is qualitative good.

Now, 20 particles were randomly distributed in the
channel, with null initial velocity, in a turbulent flow
regime. Figure 3 shows a frame of the simulation.
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Figure 1: Numerical and analytical laminar profiles of
channel flow with Re = 103.
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Figure 2: Comparison of turbulent channel flow result
with wall function, for Re = 105.
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Figure 3: Particles transported by turbulent flow in the
channel.

5 Conclusion

The numerical model implemented provides accurate
results for the velocity profiles, but results for particle
transport still need to be validated. However, the model
covers several areas of CFD, such as basic turbulence
modeling, finite di�erence method, numerical di�usion,
particle transport, and serves as a complete learning
tool.
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1 Introduction

Ion beam sputtering is one important technology which
operates in nonequilibirum conditions and allows the
processing of materials and structures outside the limits
of the equilibrium thermo-dynamics. The theoretical
comprehension of such process is still an ongoing chal-
lenge and their mathematical modeling needs more
development. Our effort aims toward the implementa-
tion of a numerical scheme to solve a model proposed
to the ion beam sputtering erosion.

The phenomenon consists on the ionic bombardment
of a surface, spontaneously developing a well-ordered
periodicity over a large area under certain conditions.
This physical process responsible for the formation of
periodic structures on the previously surface is called
sputtering. Depending on the energy of the incident ion,
a train of collision event may be established, resulting
in the ejection of atoms from the matrix. The morphol-
ogy of the surface can drastically change due to these
sputtered atoms, being responsible for the appearance
of unexpectedly organized patterns, such as ripples and
hexagonal arrays of nanoholes.

The Kuramoto-Sivashinsky equation is deterministic
and highly nonlinear, being capable of producing a
great variety of morphologies, making it a strong candi-
date to represent the complex structure formation on
sputtered surfaces. In the present endeavor, a finite-
difference semi-implicit splitting scheme of second order
in time and space is proposed to numerically solve an
anisotropic Kuramoto-Sivashinsky equation subjected
to periodical boundary conditions for two dimensional
surfaces.

2 Numerical scheme

One of the simplified and dimensionless form of the
anisotropic Kuramoto-Sivashinsky reads:

@h̄

@⌧
= �↵̄h̄+ µ̄

@2h̄

@X2
� c2

@2h̄

@Y 2
+ ⌫̄

x

✓
@h̄

@X

◆2

� c3
✓
@h̄

@Y

◆2

�D
XX

@4h̄

@X4
+D

XY

@4h̄

@X2@Y 2
+ c2

@4h̄

@Y 4

�K̄

✓
@4h̄

@X4
+ 2

@4h̄

@X2Y 2
+

@4h̄

@Y 4

◆
(1)

where h̄ and ⌧ are, respectively, the surface height func-
tion of the external atom layer and the time dependency
of the transient model, with X and Y as the domain
space coordinates. The function c represents the cosine
of the incident angle ✓. Equation. 1 presents a damping
term �↵h̄, with ↵ being damping coefficient, contribut-
ing to the smoothening of the surface. Finally, K takes
into account the surface diffusion effects, which varies
with temperature. The parameters µ, ⌫

x

, D
XX

and
D

XY

are anisotropy coefficients and also function of ✓.

We propose the following second order in time Cranck-
Nicolson semi-implicit scheme for solving Equation 1
with a

µ

= 4, high temperatures and < 65.3� [1]:

h̄n+1 � h̄n

�⌧
= ⇤

X

h̄n+1 + h̄n

2
+ ⇤

Y

h̄n+1 + h̄n

2
+ fn+1/2

Since the operators ⇤n+1/2
X

, ⇤n+1/2
Y

and the function
fn+1/2 contain terms in the new stage we do internal
iterations at each time step according to:

h̄n,m+1 � h̄n

�⌧
= ⇤

X

�
h̄n,m+1 + h̄n

�

+⇤
Y

�
h̄n,m+1 + h̄n

�
+ fn+1/2

The splitting is made according to the Douglas second
scheme [2]

˜̄h� h̄n

�⌧
= ⇤

X

˜̄h+ ⇤
Y

h̄n + fn+1/2 + (⇤
X

+ ⇤
Y

) h̄n

h̄n,m+1 � ˜̄h

�⌧
= ⇤

Y

�
h̄n,m+1 � h̄n

�
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3 Results and Discussion

3.1 Initial Pattern: Random Structure

The first case analyzed was for a mesh with 256 ⇥ 256
points with a randomly generated initial pattern, rang-
ing from 0 to 0.1. Since the linear stability analysis
reveals a value of �

c

= 18 for the critical wavelength
corresponding to the maximum growth rate in the ~1

x

direction, each wavelength of the final pattern was ex-
pected to be represented by approximately 9 points.

Figure 1 shows the steady state hexagonal structure
clear of defects, after the emergence of hexagonal modes
from the initial random pattern. The Fast Fourier Trans-
form (FFT) is also displayed for the central part of the
domain (Figure 2).
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Fourier Transform for ⌧ = 49, 200

3.2 Initial Pattern: Monomode ~q = q
o

~1
x

Another case of interest studied was for an initial pat-
tern with sine function in the X direction, which rep-
resents a monomode 1D structure with wavevector
~q = q

o

~1
x

. The pattern started with 14 wavelengths,
being approximately half of the total number of wave-
lengths in the steady state from the previous case, which
agrees with the critical wavelength calculated from the
linear stability analysis and is placed inside the sta-
ble domain. Figure 3 displays the final state obtained,
which is a 1D structure with 27 wavelengths, and Figure
4 shows its Fourier Transform. The wave amplitude
goes initially from (0;0.1) to (-0.4;0) in the final state,
which is also consistent with the physical phenomenon
of surface erosion. Although it seems that the steady

state was reached, hexagonal modes are expected to
grow after more time steps.
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Top XY view for ⌧ = 150

−200 −100 0 100 200
0

20

40

60

80

100

120

X

1

Figure 4: h̄
n

Fourier Transform for ⌧ = 150

4 Conclusions

In the present paper we have developed a finite-
difference time splitting scheme for solving an
anisotropic Kuramoto-Sivashinsky equation to describe
a surface eroded by ion bombardment. Hexagonal pat-
terns grew from a domain with random initial condi-
tions, and for the monomode ~q = q

o

~1
x

case the wave-
length split in two, meeting the critical wavenumber
from the linear stability analysis. Both simulations were
physically consistent with the sputtering phenomenon,
reproducing ripple and hexagonal structure formation
dynamics.
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1 Introduction

In linear elasticity problems by using of usual displacement-

based finite element methods, we are able to numerically de-

termine the displacement field directly and the stresses are

evaluated by post-processing. It is well known that standard

Galerkin finite element approximations degrade when the Pois-

son’s ratio tends to 1/2, corresponding to near incompressible

elasticity.

Hybrid methods are characterized by weakly imposing conti-

nuity on each edge of the elements through the Lagrange mul-

tipliers. In contrast to DG methods, hybrid formulation al-

lows an element-wise assembly process and the elimination of

most degrees of freedom at the element level resulting a global

system involving only the degrees-of-freedom of the Lagrange

multiplier.

Based on hybridization techniques Faria et al [1, 2] propose

a primal hybrid finite element method for the displacement

field combining the advantages of DG methods with an ele-

ment based data structure and reduced computational cost.

As multiplier was chosen the trace of displacement field. Sta-

bilization and symmetrization terms are added to generate a

stable and adjoint consistent formulation allowing greater flex-

ibility in the choice of basis functions of approximation spaces

for the displacement field and the Lagrange multiplier.

After this step, stress approximations with observed optimal

rates of convergence in H(div) norm are recovered by a lo-

cal post-processing of both displacement and stress using the

multiplier approximation and residual forms of the constitutive

and equilibrium equations at the element level.

2 The Model Problem

Let � in R2 an open bounded domain with boundary � = ��

and external force f � [L2(�)]2. The kinematical model of lin-

ear elasticity consists in finding a displacement vector field u

satisfying

�div�(u) = f in �,

�(u) = D�(u) in �,

u = g on �,

(1)

where �(u) is the symmetric Cauchy stress tensor, �(u) =
1
2 (�u+ �uT) is the linear strain tensor. For linear, homoge-

neous and isotropic material �(u) is given by �(u) = D�(u) =
2µ�(u) + �(tr �(u))I, where tr �(u) = divu, I is the identity

tensor and � and µ are the Lamé parameters.

3 Stabilized Hybrid Discontinuous Galerkin

Formulation

We now present a Stabilized Hybrid Discontinuous Galerkin

(SHDG) formulation for the linear elasticity problem in its

primal form with the multiplier � defined as the trace of u:

� = u|e on each edge e � Eh.

The Stabilized Hybrid Discontinuous Galerkin (SHDG)

method is formulated as:

Find the pair [uh,�h] � Vh�Mh such that, for all [vh,µh] �
Vh �Mh

�

K�Th

�

K
D�(uh) : �(vh)dx�

�

K�Th

�

�K
(D�(uh)nK)·(vh�µh)ds

+�
�

K�Th

�

�K
(D�(vh)nK) · (uh � �h)ds

+
�

K�Th

2µ

�

�K
�1(uh � �h) · (vh � µh)ds

+
�

K�Th

�

�

�K
�2((uh � �h) · nK)((vh � µh) · nK)ds

=
�

K�Th

�

K
f · vhdx.

with Vh = {v � [L2(�)]2 : v|K � [Sk(K)]2 �K � Th},

Mh = {� � [L2(Eh)]2 : �|e = [pl(e)]
2, �e � E0

h, �|e = 0, �e � E�
h},

where Sk(K) = Pk(K) (the space of polynomial functions of

degree at most k in both variables), and pl(e) is the discon-

tinuous piecewise polynomial spaces of degree at most l on

each edge e. The residual term multiplied by � has been con-

sistently added according to the following choices: � = �1,

symmetric and adjoint consistent formulation; � = 1, nonsym-

metric and naturally coercive formulation; and for � = 0, in-

complete formulation allowing greater flexibility in the choice

of basis functions of the approximation spaces for the displace-

ment field and the Lagrange multiplier. Here, �1 is a penalty

parameter introduced to stabilize the displacement field uh and

the multiplier �h and �2 stabilizes the normal component of

both variables. We also define penalty functions �1 and �2 as

�1 = �0
h and �2 = �n��0

h �e � Eh with �n > �0 > 0.

3.1 Stress and displacement local post-

processing

In most engineering applications stresses are the variables of

main interest. Classically, in displacement finite element for-
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mulation stresses are computed indirectly using the displace-

ment approximation and the constitutive equation only. With

this classical approach, the approximation �h = D�(uh) con-

verges at best with the following rates in L2 and H(div) norms:

�� � �h�L2 = Chk, �� � �h�H(div) = Chk�1.

Alternatively, we propose here a local post-processing consist-

ing in solving at each element K � Th the local problem in

stress and displacement fields:

� div�(u) = f in K,

A�(u) = �(u) in K,

u = �h on �K,

(2)

with �h given by the solution of the global problem and A =

D�1. Stress and displacement approximations [�PP ,uPP ] for

[�,u], solution of (2), are obtained in the finite dimension

spaces Wk
h(K) = {�i,j � Sk(K), �i,j = �j,i, i, j = 1, 2},

Vk
h(K) = {vi � Sk(K), i = 1, 2}. Considering the following

residual form on each element K � Th
�

K
A�PP : �hdx+

�

K
uPP · div�hdx�

�

�K
�h · �hnKds

+

�

K
div�PP · vhdx+

�

K
f · vhdx

+�1

�

K
(A�PP � �(uPP )) : (�h � D�(vh))dx

+
�2
2µ

�

K
(div�PP + f) ·div�hdx+2µ

�

�K
�1(uPP ��h) ·vhds

+�

�

�K
�2((uPP � �h) · nK)(vh · nK)ds = 0.

For appropriate choices of the stabilization parameters �1 and

�2, we have observed the following convergence rate for the

post-processed stress:

�� � �PP �H(div) = Chk (3)

which is one order higher.

4 Numerical Results

The performance of the method is tested for a plane-strain

problem, defined on square domain � = (0, 1) � (0, 1) with

homogeneous boundary conditions, considering the elasticity

modulus E = 1 and forcing term:

f1(x, y) = (2�(2µ + �)� (µ+ �)) sin(�x) cos(�y) (4)

f2(x, y) = (2�(2µ + �)� (3µ + �)) sin(�y) cos(�x) (5)

such that the exact solution is given by

u1(x, y) =
�

�2
sin(�x) cos(�y) (6)

u2(x, y) =
(� � 1)

�2
cos(�x) sin(�y). (7)

Results of a study on the h-convergence for displacement (uh)

and stresses (�h) are presented in Figs. 1–2. In these experi-

ments we use uniform partitions of the domain, symmetric for-

mulation (� = �1), linear triangular elements with k = l = 1,

�0 = 2 and �n = 7. Figure 1 shows optimal rates of conver-

gence for displacement (uh) in L2 norm and H1 seminorm, re-

spectively with identical accuracy for all approximations when

� � 1/2 . In Figure 2 we have a comparison between the stress

recovered by using the constitutive law and the local postpro-

cessing formulation. It is seen that when we use the consti-

tutive law the locking e�ect appears, but using the proposed

formulation optimal rates are obtained.
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Figure 1: Convergence study for uh in (a) L2(�) norm ) and
(b) H1(�) seminorm of SHDG approximations with
descontinuous multiplier, �0 = 2, �n = 7, �1 = 40
and �2 = �1/2.
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Figure 2: Convergence study for � in H(div) norm of SHDG
approximations with descontinuous multiplier, �0 =
2, �n = 7, �1 = 40 and �2 = �1/2.

5 Conclusions

The Hybrid methods preserve the main properties of the DG

method but with reduced computational cost. Is easily imple-

mented using the same data structure of continuous Galerkin

methods. Numerical results show optimal rates of convergence

for the primal variable uh and for the Lagrange multiplier �h.

A local post-processing based on the multiplier approximation

and residual forms of the constitutive and equilibrium equa-

tions at the element level is proposed to recover stress approx-

imations with observed optimal rates of convergence in H(div)

norm.
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1 Introduction

A three-field finite element scheme designed for solving
systems of partial di�erential equations governing sta-
tionary incompressible flows is presented. It is based
on the simulation of a time-dependent behavior. Once
a classical time-discretization is performed, the result-
ing three-field system of equations allows for a stable
approximation of velocity, pressure and extra stress
tensor, by means of continuous piecewise linear finite
elements, in both two- and three-dimension space. The
main advantage of this formulation is the fact that it
implicitly provides an algorithm for the iterative reso-
lution of system non-linearities. We show that it can
be employed with advantages, to the case of newtonian
or quasi-newtonian fluids.

2 Generalized Stokes System

We introduce our methodology in the context of the
following generalized Stokes system, derived from the
linearization of the equations that govern the flow of a
Maxwell viscolelastic liquid, assuming moderate veloci-
ties and velocity gradients, the non linear terms may
be neglected, namely:

From a given state at time t = 0 defined by a given
solenoidal velocity u

0 and an extra stress tensor �

0, for
t > 0 find p, u, � that solve the following system, with
u = g on �� � (0, �):

�u

�t

� � · � + �p = f

� · u = 0

� + �

��

�t

= 2�D(u)

�
����

����
in ��(0, �). (1)

3 Time Discretization and Splitting Algo-

rithm

We present an algorithm for solving both newtonian
and non newtonian flow equations, in the u, p, � for-
mulation. Although this algorithm and the underlying
variational formulation are described here only in the
context of problem (1), its adaption to more general
cases is straightforward, including for instance the
Navier-Stokes equations, or yet turbulent flow with
turbulent stress models. Indeed in the latter cases it
su�ces to take � = 0, before incorporating non linear
expressions or terms. It seems however that in the
context of viscolastic flow the new approach appears to
be the most promising, since in this case the use of a
three-field formulation is mandatory.

We have mainly dealt with an explicit splitting algo-
rithm for the time integration or the iterative solution
of system (1). However before presenting it we consider
the underlying implicit discretization in time of (1).

Let �t > 0 be a given time step. Then starting from
u

0 and �

0, for n = 1, 2, . . ., and prescribing u

n = g

on �� for every n, we determine approximations of
p(n�t), u(n�t) and �(n�t), denoted by p

n, u

n and �

n

respectively, as the solution of the following problem:

u

n � u

n�1

�t

� � · �

n + �p

n = f

� · u

n = 0

�

n + �

�
�

n � �

n�1

�t

�
= 2�D(un)

�
�����

�����

in �.

(2)

4 Space Discretization

Once we held the demonstration of equivalence between
the time discretized system and the chosen variational

1
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formulation, we proceed then to the space discretiza-
tion of the system. This was performed with linear
finite element for the three fields u, p, � and regularity
assumptions in respect of the domain and the spaces
(cf. [1]). Once we have obtained the fully discretized
system, we consider a lumped mass version of system,
denoted by ()h, which diagonalizes weighted mass ma-
trices. Next we consider the internal iteration algorithm
to explicitly solve the system in every time step, with
respect to each velocity and extra stress tensor com-
ponents. As can be observed in the system (3), s is a
index of internal iteration. It is intended to perform an
approximation as closer as possible between the solution
of the explicit scheme and the solution of the implicit
scheme when s tends to infinity.

�
������������������

������������������

�t

2(�p

n,s
h , �q) = �t

2[(fn
h , �q) + (� · �

n,s�1

h , �q)]
+�t(un�1

h , �q) � �t < g

n
h , q� >

1/2, �

�q � Qh

(un,s
h , v)h = �t(fn

h + � · �

n,s�1

h � �p

n,s
h , v)+

(un�1

h , v)h �v � Vh

� + �t

2�

(�n,s
h , �)h = �

2�

(�n,s�1

h , �)h � �t

2(fn
h

+� · �

n,s�1

h � �p

n,s
h , � · �) � �t

�
(un�1

h , � · �)
� < g

n
h , �� >

1/2, �

�
�� � �h

(3)

5 Numerical Results

In order to check the accuracy of our method (3), we
performed error estimates to some three-dimensional
problems. We present one particular case of (1) with
known exact solution presented in section 5.3 in [1].
More specifically, we solved the system of equations
(3) in the domain � � (0, T ), � being the unit cube
(0, 1)3 and T = 1, subject to volumetric force f and
defined initial and boundary conditions. We solved this
problem with uniform tetrahedral meshes obtained by
first subdividing into M

3 equal cubes with edge length
h = 1/M , each one of them being in turn subdivided

into six tetrahedra in a classical manner. The figure 1
displays approximate relative errors for velocity, pres-
sure and extra stress tensor in the standard L

2-norm
for di�erent values of M with t = 1, � = 10, � = 1, and
�t taken equal to h/50.

Figure 1: L

2�norm relative errors for � = 10, � = 1
and t = 1.0

6 Conclusions

• Widespread simplifying assumption of Oldroyd-
like fluid avoided;

• Convergence results derived even for the pressure;

• In practice explicit stable scheme for �t = O(h);

• Code adaption to treat Oldroyd fluids;

• Application to thixotropic models for jelly-like
fluids;

• Extending convergence analysis to complete non-
linear system;
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1 Introduction

Computational models has been increasingly used in
sciences and engineering for design and analysis of com-
plex physical systems. This increase has taken place due
to the versatility and low cost of a numerical simulation
compared to an approach based on experimental ana-
lyzes on a test rig. However, any computational model
is subject to a series of uncertainties, due to variabilities
on its parameters and, mainly, because of assumptions
made in the model conception that may not be in agree-
ment with reality [4]. The first source of uncertainty is
inherent limitations in measurement processes, manu-
facturing, etc., while the second source is essentially due
to lack of knowledge about the phenomena observed
in the physical system. Also, an increasingly frequent
requirement in several projects of engineering is the
robust design of a component, i.e., with low sensitivity
to the variation of a certain parameter, and this re-
quires the quantification of model uncertainties. In this
short work it will exposed some fundamental notions
related to the quantification of uncertainties in physical
systems, and it will be illustrated the construction of
a probabilistic model for uncertainties description in a
simplistic mechanical system.

2 Uncertainties, variabilities and errors

To fix ideas, consider a designed system, which will give
rise to a real system through a manufacturing process.
This manufacturing process is subject to a series of vari-
abilities (due to di�erences in the geometric dimensions
of the components, variations in operating conditions,
etc) that result in some di�erences in the parameters
(geometrical dimensions, physical properties, etc) of two
or more real systems manufactured. The inaccuracies
on these parameters is known as data uncertainty [4, 5].

In order to make predictions about the behavior of the
physical system, a computational model should be used.
In the conception this model mathematical hypotheses
are made. These considerations may be or not in agree-
ment with the reality and should introduce additional
inaccuracies in the model, known as model uncertainty.
This source of uncertainty is essentially due to lack
of knowledge about the phenomenon of interest and,
usually, is the largest source of inaccuracy in model
response [4, 5].

A schematic representation of the conceptual process
which show how uncertainties of a physical system are
introduced into a computational model is shown in
Figure 1.

manufacturing process
(variabilities)

mathematical modeling
(model uncertainty)

designed
system

real
system

computational
model

model
parameters

(data uncertainty)

Figure 1: Representation showing how uncertainties are
introduced into a computational model.

Uncertainties a�ect the response of a computational
model, but should not be considered errors because they
are physical in nature. Errors in the model response
are due to the discretization process of the equations,
to the use of finite precision arithmetic to perform the
calculations, and possible bugs during the computer
code implementation

Therefore, unlike the uncertainties, that have physi-
cal origin, errors are purely mathematical in nature,
and can be controlled if the numerical methods and
algorithms used are well known by the analyst.

3 Frameworks for uncertainties description

Being uncertainties in the physical system the focus of
stochastic modeling, two approaches are found in the
scientific literature for the treatment of uncertainties:
(i) non-probabilistic, and (ii) probabilistic.

The non-probabilistic approach uses techniques such
as interval and fuzzy finite elements; imprecise proba-
bilities; evidence theory; probability bounds analysis;
fuzzy probabilities; etc, and is generally applied only
when the probabilistic approach can not be used [1].

The probabilistic approach uses probability theory to
model the uncertainties of the physical system as ran-
dom mathematical objects. This approach has a more
well-developed and consistent mathematical framework,
and, for this reason, there is a consensus among the
experts that it is preferable whenever possible to use it
[2, 5].

1
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4 A simplistic stochastic mechanical system

Consider the simplistic mechanical system shown in Fig-
ure 2, which the spring extreme displacement is given
by u = k

�1

f .

u

Figure 2: A spring subjected to a force.

If the spring sti�ness is uncertain the system response is
also subject to uncertainties. Representing the sti�ness
the random variable K, the spring displacement is now
the random variable U = K

�1

f .

Note that, to compute any statistical information of U ,
such as the mean value

E {U} =
�

R
k

�1

f pK(k) dk, (1)

it is necessary to know the probability density function

of K, denoted by pK(k).

5 Specifying probability distributions

In order to obtain a consistent stochastic model, one
cannot arbitrarily choose the probability distribution
of a random parameters, under the penalty of violating
some physical principle and/or obtain an inconsistent
mathematical model. It is a consensus that all informa-
tion available about these parameters must be taken
into account before define their distributions, i.e., spec-
ify their PDFs [4].

Accordingly, the maximum entropy principle can be
used to obtain a desired PDF.

Among all the probability distributions, consistent with

the current known information of a given random pa-

rameter, the one which best represents your knowledge

about this random parameter is the one which maximizes

its entropy:

S (pK) = �
�

R
pK(k) ln pK(k) dk. (2)

Assuming the following information is known about K:

• Supp pK � (0, +�) =� K > 0 a.s.

• E
�

K

2

�
< +�

• E {K} = m is known

• E
�

K

�2

�
< +�,

it can be shown that the gamma distribution

pK(k) = 1
(0,+�)

(k) 1
m

�

�2��2

�(��2)

�
k

m

���2�1

exp
�

�k/m

�

2

�
,

with mean m and dispersion parameter �, is the proba-
bility distribution that maximizes the entropy, respect-
ing the known statistical information on the parameter
K [3].

To the best of the authors knowledge, the distribu-
tion obtained this way is the one that most accurately
describes the current knowledge about the random pa-
rameter K.

6 Conclusions

In this short paper are presented some fundamental
notions related to the quantification of uncertainties in
physical systems and it is illustrated the construction
of a probabilistic model for uncertainties description in
a simplistic mechanical system.
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1 Introduction

1.1 Purpose

To develop prototype computer codes that could allow
the mastering of techniques involved in the implemen-
tation of FEM to reactive flows.

1.2 Motivation

CH
4

generation from biomass on the bottom of hydro-
electric reservoirs, their release in the atmosphere and
their potential negative e�ects as greenhouse gas.

1.3 General description

The construction of large dams to meet the growing
energy needs of the country has always been primarily
considered due to the fact that very active environ-
mental pressure groups consider this option as being
more "clean" and safe that the thermoelectric gener-
ation. In reality, the hydropower plants also provide
large environmental impact, which can be even more
significant that the thermoelectric option because the
anaerobic decomposition of organic matter, generating
large volumes of greenhouse gases, mainly methane,
further exacerbating the problem of global warming. In
preparation for a main study, FEM is being used for the
numerical investigation of reactive flows in 1D and 2D
with application in determination of concentration pro-
files of chemical species in continuous tubular reactors
and degradable pollutants in watercourses. The prob-
lem is being studied by solving the transport equation
subjected to transient boundary conditions, as it would
involve the operation of chemical reactors in diversi-
fied production and non-uniform pollutants discharge.
By keeping the problem within certain parameters, it
was possible to achieve the implementation of a scheme
involving the usual spatial discretization for GFEM
and Crank-Nicholson for temporal derivative, conve-
niently dealing with the problems of stability, and a
new approach to treat a natural boundary condition.

1.4 Specific situations under consideration

• Determination of species concentration profiles in
tubular reactors, where inlet and outlet concen-
trations of the reactants are constant;

• Determination of species concentration profiles in
tubular reactors, where the inlet concentrations
are transient and the outlet condition represents
a condition of physical-chemical equilibrium;

• Determination of pollutants concentration pro-
files in waterways, with inlet transient condition
and an outlet condition that represents a physical-
chemical balance.

2 Numerical techniques

The method has been applied in accordance with the
Galerkin model and the resulting integrals of weak
formulation were evaluated by the Gaussian Quadra-
ture. The programs generated structured triangular
and square meshes. The results were checked with
one-dimensional analytical solutions available.

Experimentation with the material derivative as bound-
ary condition at the outlet, i.e.,

�
�C(xi, t)

�t

+ ūxi

�C(xi, t)
�xi

�

�out

= 0 (1)

Which is equivalent to the weak form as follows:

NN�
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��

�
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�

SiSjd�
�
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+

+
NN�

j=1

�

�

Si

�
ūx

�Sj
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�Sj
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�
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�

�

�
Dx
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�Sj
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�Si
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�Sj
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�
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+
NN�
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�

�

kSiSjd�Cj = 0 (2)

This implies in a modified mass matrix, first term on
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the left, corrected by the boundary surface integral, and
a sti�ness matrix modified by the term of reaction, i.e.,

[M
1

]
�

˙

C

�
+ [K

1

] {C} = 0 (3)

For its solution, Crank-Nicolson Method and existing
criteria to address possible instabilities are applied.

3 Results

The following figure shows an example of a reactive
flow simulation with two-dimensional fully developed
parabolic speed profile, obtained with boundary condi-
tion given by eq.1.

4 Conclusion

The use of FEM is feasible to develop models that
can simulate chemical species concentration profiles in
reactive flows. The Material Derivative as balancing
condition on outlet, represent more faithfully the phys-
ical problem and does not induce greater instability.
The application of these models in the simulation of
the evolution of methane from the bottom of reservoirs
of hydroelectric plants can provide ways to capture this
gas on the surface and mitigate adverse environmental
e�ects.
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1 Introduction

The major di�culty for the numerical simulation of
incompressible flows is that the velocity and pressure
are coupled by the incompressibility constraint. To
overcome this di�culty in time dependent viscous in-
compressible flows, fractional step methods, which are
also referred in the literature as projection methods,
were developed. The major computational time associ-
ated with these schemes is the solution of the Poisson
equation at each step, which consumes large amounts of
computer time. One reason for this is that the conver-
gence rate of iterative methods that are commonly used
for this purpose, such as the Jacobi and Gauss-Seidel,
rapidly decreases as the mesh is refined [7].

On the other hand, in the realm of analytical methods,
the Integral Transform Technique [4] has been playing a
big role. It deals with expansions of the sought solution
in terms of infinite orthogonal basis of eigenfunctions,
keeping the solution process always within a continuous
domain. The resulting system is generally composed
of a set of uncoupled di�erential equations which can
be solved analytically. However, a truncation error
is involved since the infinite series must be truncated
to obtain numerical results. This error decreases as
the number of summation terms (truncation order) is
increased, and the solution converges to a final value.
Due to the series representation nature of the Integral
Transform Technique, the estimated error can be easily
obtained, which results in better global error control
of the solution. The disadvantage associated with this
approach is the need for more elaborate analytical ma-
nipulation. This e�ort can be greatly minimized with
the use of symbolical computation.

Recent works of Chalhub et al. [2, 1] introduced the idea
of a semi-analytical solution for the poisson equation
arising from the incompressible Navier-Stokes equa-
tions.

2 Classical Projection Method

In order to solve an in compressible flow problem, one
needs to solve the incompressible Navier-Stokes equa-
tions. A more e�cient way to solve these equations
was introduced by Chorin [3] as Projection Methods.
The key advantage of the projection method is that
the computations of the velocity and pressure fields
are decoupled. The algorithm of projection method is
based on the Helmholtz-Hodge decomposition1 [8] of
any vector field into a solenoidal part and an irrotational
part.

3 Solution of the Pressure Poisson Equation

The general Poisson equation for pressure in two-
dimensions, using cartesian coordinates and compatible
boundary conditions can be written in the following
form:

�

2

p

�x

2

+ �

2

p

�y

2

= Q(x, y, t) (1)

where Q is the source term.

Due to the Navier-Stokes nature, Neumann boundary
conditions are used for the pressure.

3.1 Filtering Scheme for Integral Transforma-

tion

Before continuing to the solution via integral transfor-
mation, it is proposed a separation of the pressure on
the following form:

p(x, y, t) = p

�(x, y, t) + pf (x, y) (2)

where p

� is the filtered pressure and pf is a known filter
function.

4 Classical Integral Transform Technique: Sin-

gle Transformation

In this work the Classical Integral Transform Technique
[4] is used for the purpose of solving the filtered Pois-
son equation. This is an analytical technique that uses
expansions of the sought solution in terms of an in-
finite orthogonal basis of eigenfunctions, keeping the

1Also known as Helmholtz decomposition and theorem of Ladyzhenskaya
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solution process always within a continuous domain. In
order to establish the transformation pair, the pressure
field is written as function of an orthogonal eigenfunc-
tions obtained from an auxiliary eigenvalue problem
known as the Helmholtz classic problem in cartesian
coordinates [4].

5 Results

In this chapter the results obtained from the computa-
tional code developed using the new formulation will
be presented. The solution of the incompressible flow
in a test case simulated by the proposed method will
be presented. The codes were implemented in FOR-
TRAN 90 using GFortran, they were compiled in serial
computation and using the -O3 optimization flag.

The solution of the classic Lid-Driven Cavity problem is
shown to validate the proposed formulation and evaluate
its performance for more demanding problems. Three
methods are computed and evaluated: CITT using
single transformation with filtering scheme (CITT-ST-
F), CITT using single transformation without filtering
scheme (CITT-ST) and a code developed using Finite
Volumes Methods (FVM) [6] together with a Gauss-
Seidel linear system solver [5].

In figure 1 presents the total computational time re-
quired to achieve steady state versus mesh size. It can
be seen that CITT-ST without filter requires a lot more
computational time compared to the other methods.
For very coarse meshes, CITT-ST-F and FVM require
approximately the same computational time, however,
when the mesh is refined, CITT-F overcomes FVM
performance.
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Figure 1: Lid-Driven Cavity: Total computational time
consumed to achieve steady state.

For the computation, all results were calculated with
prescribed relative precision of 10�6 for the Gauss-Seidel
iterative solver used in FVM and also for the CITT sum-
mation series convergence. In order to guarantee this
precision in the truncated summations, an automatic
truncation procedure was developed and implemented.
The projection method was used and the time-steps
�t utilized were the same for all methods. The results
computed in the current work were carried out using
only uniform meshes and also considering �x = �y and
the Neumann boundary conditions for pressure on all
impermeable/no slip walls were approximated to zero

without violating the Poisson-Neumann compatibility
condition.

6 Conclusions

The present work developed a numerical method for
solving the unsteady incompressible Navier-Stokes equa-
tions with primitive variables in two dimensions, al-
though it can be easily extended to tree dimensions.
The novel methodology is based on projection methods
schemes using a mixed approach through the Integral
Transform Technique. The Lid-Driven Cavity problem
was analysed. Results showed a very similar qualitative
behavior. One could see that for very poorly refined
meshes CITT-ST-F and FVM had similar performances.
However for more refined meshes, CITT-ST-F had a
dramatically better performance and CITT-ST (with-
out filter) had the worst performance overall. Although
more investigations are needed, CITT-ST-F has a great
potential of being a good substitute for the method-
ologies currently used to solve the pressure Poisson
equation.
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Abstract. Numerical simulation is employed to sim-
ulate two-phase flow phenomena using the continuum
method for surface tension modeling. The set of equa-
tions are based on the ’one-fluid’ Arbitrary Lagrangian-
Eulerian (ALE) description of the Navier-Stokes equa-
tions. These equations are discretized by the Finite
Element method on an unstructured mesh in which the
phase boundary is represented by a set of interconnected
elements that are part of the computational mesh, thus
a sharp representation is successfully achieved. The
presented modeling will then be used to investigate
two-phase flows with moving contact lines, slug and
annular flows in microchannels. These problems are
of great interest for technology applications such as
the cooling of microelectronic devices. The employed
formulation, the interface representation, bubble-wall
modeling and some initial results of this Ph.D. the-
sis will be presented for 2-dimensional cartesian and
axisymmetric cylindrical coordinates.

1 Introduction

Flows with two unmixable fluid phases are commonly
found in many practical applications, such as in refrig-
eration industry or in cooling systems of the next gen-
eration of microelectronic devices. In the latter small
scales make quantitative experimental data di�cult
to obtain. Numerical simulations o�er an alternative
approach, complementing the experimental and theoret-
ical ones. A well established method to model fluid flow
with di�erent phases computationally is the so called
one fluid formulation, where a single set of equations
is used to describe the entire flow field. The e�ects of
of surface tension, which occur only at the interface
between two fluids can be modelled by a volume force as
proposed by [2]. Di�erent approaches exist to describe
the motion of the interface. Eulerian methods where
the computational mesh is fixed and the interface is
described by the advection of a scalar field. Lagrangian

methods which use a mesh moving with the flow. In
this work a one fluid formulation is employed and the
interface is tracked in a Lagrangian way.

Contact lines may appear in two-phase flows whenever
an interface intersects with a solid boundary. Such as
when a drop of liquid is placed on a surface under the
influence of gravitational field. Despite its occurrence
in many important applications and in everyday life
contact line motion is still not physically understood.

2 Governing Equations

The Navier-Stokes equations for two-phase flow in 2d
cartesian (m = 0) or axisymmetric cylindrical coordi-
nates (m = 1) read

�vx

�x

+ �vr

�r

+ m

vr

r

= 0,

�

Dvx

Dt

= � �p

�x

+ µ �vx + � g + fx,

�

Dvr

Dt

= ��p

�r

+ µ

�
�vr � m

vr

r

2

�
+ fr.

Use has been made of the operator

� = �

2

�x

2

+ �

2

�r

2

+ m

r

�

�r

.

To not interfere with the symmetry it has been assumed
that gravity acts only in the direction of the symmetry
axis (x-direction). The body force term �

f = (fx, fr)T

accounts for the e�ects of surface tension modeled by
[2]

f = � ��n �

where � is the surface tension coe�cient and � is the
Dirac distribution with support on the interface. The
normal vector �n and the mean curvature � are defined
by the geometry of the interface. The curvature is

1
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computed by

�axi = �

2d + m

sin(�)
r

where �

2d is the curvature of the interface in the 2d-
plane and � is the angle of the interface normal relative
to the symmetry axis, see Fig 1.

r

x�

�n

R

1

Figure 1: Axisymmetric problem formulation.

3 Mesh Description

In this work an arbitrary Lagrangian Eulerian (ALE)
method is employed. This method combines the La-
grangian description (moving mesh) with the Eulerian
description (fixed mesh). It makes use of boundary-
adapted grids, where the mesh nodes at the interphase
are moved along with the flow velocity in Lagrangian
fashion while the boundary nodes remain fixed in Eu-
lerian fashion. To ensure a good quality mesh at any
time, points can be deleted, added and displaced to the
mesh and the solution interpolated on the new mesh.
More details regarding the computational method can
be found in [1].

4 Results

In this section we describe a numerical approach to mov-
ing contact lines, which consists in imposing a static
(constant) contact angle at the three phase contact line.
Such an approach is widely used in literature, see e.g.
[3]. The model problem consists in a liquid drop re-
leased on a surface and surrounded by a lighter liquid or
a gas. The flow is modelled in the 2d (cartesian) plane.
At the beginning the drop is half-circular and a fixed
value of the contact angle � is imposed at all times. The
drop deforms due to gravity which is directed downward
and also as a consequence of the imposed contact angle.
At steady state, the shape of the drop is given by the

balance of two forces: the gravitational force which
tries to spread the drop on the surface minimizing its
potential energy and the surface tension which tries to
minimize the drop’s surface. The ratio of these two
forces is described by the Eotwos number

Eo = �l g R

2

0

�

based on the initial radius R

0

of the drop and the den-
sity of the liquid �l. In the absence of gravity, that is for
Eo = 0, the drop’s shape at steady state is a circular-
cap. The simulation results for a case dominated by
gravity (Eo = 10), with an imposed contact angle of
50o, can be seen in Fig. 2.

Figure 2: Final bubble shape for Eo = 10 and � = 50o.

5 Conclusions and Further Work

In this article a numerical framework for axisymmetric
simulations and static contact angles has been presented.
Validations of the already implemented features namely
static contact angle, phase change, annular flows will
be performed. Afterwards, additional phenomena such
as dynamic contact angles and Navier-Slip boundaries
will also be developed.
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1 Introduction

Thermocapillary migration is a phenomenon of bubble
and drop motion driven by temperature-induced sur-
face tension gradient. The variation of surface tension
creates a tangential stress along the interface leading
to interfacial flow from low to high surface tension re-
gions, which drives fluid around on both sides of the
interface. The motion of the neighboring fluid finally
propels bubbles and drops in the opposite direction.
This phenomenon is particularly important to under-
stand instabilities in evaporative cooling of microelec-
tronics due to the two-phase nature of the flow and the
microscale characteristic of the system, where surface
tension force become more relevant.

Since the pioneering work of Young et al. [3], that the-
oretically derived the terminal velocity of a bubble in
a vertical temperature gradient, this subject has been
extensively explored theoretically and experimentally
for liquids where surface tension is a linearly decreasing
function of temperature. For these liquids, bubbles
migrate in direction to higher temperatures. However,
little attention was given for self-rewetting liquids in
this topic, i.e. binary mixtures, such as water/butanol,
where surface tension is a parabolic function of temper-
ature with a well defined minimum. These liquids have
higher heat transfer coe�cient than pure liquids, what
make it attractive for phase-change based cooling appli-
cations. Shanahan and Sefiane [2] demonstrated that in
self-rewetting liquids thermocapillary forces may drive
bubbles away from high temperatures and against flow
towards the surface tension minimum until reach an
equilibrium position. At confinement conditions they
observed that larger bubbles present sustained oscil-
lations around the equilibrium position. The present
study aim to complement this work by means of di-
rect numerical simulations (DNS) in order to increase
the comprehension of thermocapillary migration in self-
rewetting fluids.

In this work, we consider an axisymmetric gas bubble
of initial radius R traveling against flow in an axisym-
metric horizontal channel of length L and diameter
H, until reach the equilibrium position. Self-rewetting

liquid flow inside the channel with a fully developed
Poiseuille velocity profile, and the channel wall is sub-
jected to a temperature gradient, � = (Thot � Tcold)/L.
The gas bubble is introduced at the downstream side
of the channel (high temperatures) with zero initial
velocity. We assume a thermodynamically saturated en-
vironment, with no phase change, and a negligibly small
e�ect of gravity due to the microscale in consideration.

2 Model

The two-phase system is modeled with Gerris [1] using
the Volume-of-Fluid method. The two fluids considered
are incompressible, Newtonian and immiscible. The di-
mensionless governing equations for mass, momentum
and energy conservation can be respectively written as:

� · u = 0 (1)

�

�
�u

�t

+u·�u

�
= ��p+ 1

Re

�·
�

µ

�
�u+�u

T
��

+ 1
We

fst

(2)

�T

�t

+ u · �T = 1
RePr

� · (��T ) (3)

where u, p and T are the velocity, pressure and temper-
ature fields, and �, µ and � are the density, viscosity
and thermal di�usivity, respectively. Time is denoted
by t, and fst is the volumetric surface tension force.
The dimensionless parameters are the Reynolds, Web-
ber and Prandtl numbers given by Re � �LV R/µL,
We � �LV

2

R/�

0

and Pr � µL/(�L�L), respectively,
where V is the characteristic velocity and �

0

is the
reference surface tension coe�cient.

The two phases are modeled using a “homogeneous”
approach where both fluids obey the same set of gov-
erning equations and are represented by a single fluid
with di�erent properties locally identified by a volume
fraction field c that can take 1 in the liquid phase, 0 in
the gas phase and between 0 and 1 at the interface . In
that sense, the single fluid volume averaged density, vis-
cosity and thermal di�usivity read as � = c + (1 � c)�r,
µ = c + (1 � c)µr and � = c + (1 � c)�r, respectively,
where �r = �G/�L, µr = µG/µL and �r = �G/�L are
the density, viscosity and thermal di�usivity ratios and
the subscript L stands for liquid and G for gas. The
volume fraction field evolves in time across the domain
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by the conservation equation,

�c

�t

+ u · �c = 0 (4)

The volumetric surface tension force in eq. (1) is de-
noted by fst = (��n + �s�)�s, where the first term
is the normal component given by Laplace’s formula
and the second term is the tangent component given by
surface tension gradient. The interface normal vector n

and the curvature � are represented by, n = �c/|�c|
and � = �(�s ·n). The gradient operator tangent to the
interface is given by, �s = � � n(n · �) and the surface
tension coe�cient is represented by, � = 1��

1

T +�

2

T

2,
in order to model the self-rewetting fluid behaviour.

3 Results and Discussion

We analyse the e�ect of the thermal di�usion controlled
by the Prandtl number, on the bubble thermocapillary
motion. The base set of parameters derived from [2] is:
Re = 4.37, We = 4.22 � 10�4, �r = 0.001, µr = 0.01,
�r = 0.04, �

1

= 0.3, �

2

= 0.15, � = 0.1, L = 80, H = 4,
R = 1, U = 1. In Fig. 1 we can see the initial conditions,
where the initial bubble position is at zi = 70, and the
reference position for the temperature corresponding
to the surface tension minimum, Tm, was chose as the
location where its isothermal line (black line in Fig. 1)
cross the center of the channel, at zm = 40.

Figure 1: Initial conditions for Pr = 0.1 (top), Pr =
1.0 (middle) and Pr = 6.1 (bottom). The
black line is the isothermal line for Tm, the
white line is the bubble interface and the
temperature contours is shown in colour.

In Fig. 2 we show the temporal evolution of the bubble
center of mass during the counter-current thermocap-
illary motion in a channel with flow in the positive
direction of z-axis. The bubble reach the equilibrium po-
sition through a damped oscillation motion and doesn’t
present sustained oscillations.

Figure 2: Temporal evolution of the bubble center of
mass, zCM , for di�erent Prandtl numbers.

As we increased the Prandtl number towards realis-
tic values (Pr � 6.1), we observed two e�ects of the
thermal di�usion on bubble’s motion: first, it delays
the thermocapillary e�ect allowing higher amplitude
oscillations; second, it weakness the thermocapillary
e�ect, resulting in lower velocities for higher Prandtl
numbers, as can be seen in Fig. 2. The first e�ect can
be interpreted as a result of the decrease in thermal
di�usion retarding the change of temperature at the
bubble interface. The second e�ect can be explained
by means of the temperature gradient vector field (per-
pendicular to the isothermal lines) that diverges from
the z-direction as we increase the Prandtl number, and
consequently decrease the net thermocapillary force in
the direction parallel to bubble motion.

4 Future Work

The model will be extended to 3D to study confine-
ment e�ects and avoid strong deviation of the temper-
ature gradient vector field from the direction parallel
to bubble motion, in order to capture the sustained
oscillations.
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Abstract. With the increase use of nanomaterials
increasingly seeking the creation of techniques and
equipment to determine properties of interest in the
nanometer scale. Thus, the technical SAXS (Small
Angle X-Ray Scattering) allow the analysis of nano-
materials and determine various parameters such as
particle size, density and morphology of nanoparti-
cles. Normally, X-rays pass through the sample (the
transmission mode) and each particle interacts with
the X-ray emitting a signal which is detected and
analyzed. As in all other areas of research, there
are major challenges to the development of instru-
mentation for the application of this technique. The
challenges of this research are the optical part of
the project, from the platform of conventional X-ray
di�raction equipment. The X-ray beam must have
the smallest possible attenuation and this condition
is obtained with the evacuation of all traveled optical
path which includes the chamber where the sample
is placed and the X-ray bidimensional gas detector.

1 Introduction

The devices that are used in the characterization of
materials played an important role in the research of
new materials. But many of them become obsolete
when it comes to the study of nanomaterials. The
SAXS equipment is a powerful tool in development
and research at the nano scale, allowing the precise
details of the structure of materials, defining the ar-
rangements, shapes and the density of the crystalline
structure. The progress made in the study and devel-
opment of nanomaterials, emerged in parallel and as
a result of these advances, the need to employ SAXS
techniques to improve understanding of the di�erent
properties that these materials present in relation
to the microscopic properties. Due to the cost fac-

tor, the instrumentation of this nature are extremely
scarce in developing countries, as they are marketed
with high values, in many cases prevents the acqui-
sition of this equipment even by major educational
institutions and research. Thus, from conventional
X-ray di�raction equipment, instrumentation will
enable the implementation of SAXS technique is de-
veloped, where the entire optical path traveled by the
X-ray beams to reach the two-dimensional detector
gas will be evacuated. Thus, from conventional X-ray
di�raction equipment, instrumentation is developed
which allow the application of the SAXS technique in
which the entire optical path traveled by the X-ray
beams to reach the bidimensional detector gas will
be evacuated. The whole course of the X-ray beam,
including the sample port should be free of particles
that can reduce its intensity. The collimation of the
flux of X-ray beams will also be developed.

2 Design and instrumentation

The base equipment, disposed for the preparation of
this work is Siefert HGZ-4, which will go through
two stages of reconstruction. In the first stage, this
was done in partnership between the UERJ (Univer-
sidade Estadual do Rio de Janeiro) and the CBPF
(Centro Brasileiro de Pesquisas Físicas), restructured
and reshaped all the electronics and control system
part as: replacement of stepper motor system, the
encoder and the clutch system and the goniometer
axis. The second stage is the part where this work
is inserted, foresees the development of the SAXS
optics, construction of the collimation system X-ray
beam, the design and placement of the bidimensional
detector. In the design of components that will com-
pose the optical parts of the equipment are the gas
detectors, developed and manufactured by CBPF,

1
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which dominates this technology.

Figure 1: Schematic composed of (left to right): X-
ray source, collimator, sample, scattering
angle, beam stop and detector [1].

3 Results and discussion

This project because it is multiple steps and di�erent
areas of expertise, became a challenge that grad-
ually has been overcome, since all the electronics
and control system were completely reconstructed
and finalized, getting ready to design phase and in-
strumentation that are underway and which will be

developed using national technology in the devel-
opment of equipment that allows the use of SAXS
techniques.

4 Conclusion

This design will contribute in the development of ex-
treme importance equipment in the development and
research of new materials and can be subjected to a
patent, as the technology employed in gas detectors
developed in CBPF holds an international patent
and configuration of any instrumentation will com-
pose this equipment, establishes a new application
of this technology.
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1 Introduction

The search for high mechanical performance materials
aroused great interest in the research and development
of advanced ceramics such as silicon carbide (SiC). How-
ever, the porosity is still seen as a performance limiting
factor of these. This work aims to quantify the porosity
through analysis and digital imaging (DIP) obtained
by optical microscopy with control of grinding and pol-
ishing parameters along various depths of advanced
ceramic, followed by stacking these images through a
3D module to analyze the three-dimensional behavior
of the pores. The methodology will be compared to the
Archimedes method and computed tomography. The
present results show that the DIP technique for the type
and distribution of the pores existing been successful
to a hard material characterization.

Silicon carbide (SiC) is highlight of ceramic class. This
material has excellent mechanical properties at low and
high temperatures, high wear resistance, high thermal
stability and corrosion resistance. The unique charac-
teristics of silicon carbide allow it to be used in various
structural applications [1].

Some problems still limit the scope of silicon carbide,
and other ceramic in general. The high cost of the man-
ufacturing process, the di�culty of sintering and the
control of porosity, together with the di�culty of more
complex geometries. There are e�ective techniques for
evaluation and quantification of the existing porosity
in advanced ceramics, such as computed tomography,
however, these techniques require high equipment and
handling costs, which led to the search for alternatives
that provide equally safe and less costly results, as quan-
titative stereology using the Digital Image Processing
(DIP).

2 Methodology

Until now we used three samples 10x10x11mm provided
by ESK manufacturer, Ekasic F group [1]. These sam-
ples were submitted to Archimedes procedure for den-
sity measurements, according to the NBR 6220 ABNT

[1]. They were embedded, ground and polished in nine
layers (100, 200, 500, 1000, 2000, 3000, 4000, 5000
and 6000 uM) for obtaining optical microscopy images
throughout the material. Following collection were 108
images of the surfaces of samples with an optical micro-
scope (MO) Olympus BX60M, 36 for each sample (04
in each of the nine sections) in di�erent regions of the
surface. All were collected under 100x magnification.

The digital image processing was carried out through
AxionVision software [1]. All images were processed
individually and involved steps of preprocessing, seg-
mentation and feature extraction. There was no need to
eliminate "noise" and lighting correction for generating
bimodal histograms for images.

3 Results and Discussion

Being commercial samples, the manufacturer claims
that the degree of porosity of the material is less than
2.0% of its volume and its density is 3.15g/cm3. Figure 1
illustrates an image obtained by MO 100x magnification
with a depth of 100 micrometres. The result after the
segmentation step for extracting attributes and quan-
tifying the number of pores present in the material is
shown in Figure 2. In turn, Figure 3 is an image optical
microscope with a magnification of 500x at a depth of
200 micrometres . The result of their digital process-
ing is shown in Figure 4. Table 1 shows the silicon
carbide densities obtained by the Archimedes method.
Comparing the density obtained by this method with
the theoretical value in this literature, a comparison
is made where the di�erence between the values is the
number of pores present in the material. Table 2, in
turn, shows the porosity values obtained using the DIP

Porosity of sample 01 (%) 0.622
Porosity of sample 02 (%) 0.606
Porosity of sample 03 (%) 0.579

Average porosity of the material (%) 0.579

Table 1: Average porosities of three samples and SiC
as a whole.
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Figure 1: Optical microscopy image of SiC sample with
100x magnification after sanding and polish-
ing at a depth of 100µm.

Figure 2: Same image in Figure 1, but after digital pro-
cessing to identify and quantify the presence
of pores.

Figure 3: Optical microscopy image of SiC sample with
500x magnification after sanding and polish-
ing at a depth of 200µm.

Figure 4: Same image in Figure 3, but after digital pro-
cessing to identify and quantify the presence
of pores.

Bulk density (g/cm3) Relative Density Relative Density (%)
3.09 0.98 98.09
3.15 1.00 100.00
3.16 1.00 100.00
3.17 1.00 100.00

Average Porosity (%) 0.48 0.82

Table 2: Measurements of relative and apparent densities of SiC by Archimedes method.

4 Conclusions

It was found that the percentage porosities found for
the methods of Archimedes and PDI showed a great
similarity (0.48%±0.82 by Archimedes and 0.6%±0.018
per PDI) and did not exceed the 2.0 limit % stipulated
by the manufacturer for ESK lot Ekasic F SiCa de-
tailed procedure has been prepared that will serve as
guide for future research. The Digital Image Processing
had credibility stated for the tested samples, proved to
be a suitable method which is based on quantitative
metallographic procedures.
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1 Introduction

Polydispersed multiphase flows are present in several
natural and industrial processes, and involve a series of
physical phenomena, such as: transfer of mass, momen-
tum and energy. In bubble column chemical that are
used in the biochemical and petrochemical industries, re-
actor e�ciency significantly depends on interfacial area
of the bubbles and the resident time. Therefore, the
particle size distribution (PSD) is a parameter whose
behavior is important to control this process. In mate-
rial science, the precipitation reaction is another good
example of polydispersed multiphase flow. In this case,
reaction happens in a liquid phase with some chemical
substances that react to form a solid with some specific
features. The final market value of the crystallized prod-
uct is strongly dependent on its PSD. For these reasons,
modeling and simulation of polydispersed multiphase
flow is critically important. In this work, we describe
a computational framework to simulate polydispersed
multiphase flows based on population balance equations
(PBE), and we also discuss which numerical methods
is suitable to couple the solution of PBE with CFD
simulations.

2 Mathematical Model

Three main approaches can be used to model poly-
dispersed multiphase flows: the fully-resolved, the La-
grangian point-particle and the Eulerian-Eulerian model
[6]. In the Eulerian-Eulerian (E-E) models, the phase
equations are derived for their mean variables, that are
closed by constitutive relations obtained from empirical
data [3]. This average procedure yields equations with
a reasonable computational cost and accuracy for com-
plex problem in large scale. Nonetheless, this model by
itself can not capture particle-particle interactions, such
as aggregation and breakage phenomena. In order to
overcome this limitation a mesoscale framework called
population balance model (PBM), which is the conser-
vation equation for the number of particles represented
by a number density function (NDF) [6], can be com-
bined with a multi-fluid flow formulation [5] to predict

the particle-particle and particle-fluid interactions.

2.1 Eulerian Multiphase Model

The Eulerian-Eulerian multiphase equations are derived
by the averaging process in conservation equations. The
result of this averaging procedure yields the mass con-
servation equation for the each phase below [6]:

�(r���)
�t

+ �.(r���u�) = ��, (1)

where �� is the density, �� is a mass source term and
u� is the velocity of the phase �, where � = 0 · · · N . In
this equation, the volume fraction, r�, appears as the
probability of a phase � exists in the space and time
regarding all possible realizations.

Extending the same procedure to momentum conserva-
tion equations for the � phase, the following averaged
equation is obtained:

�(r���u�)
�t

+ �.(r���u�u�) = �r��p� + (2)

�.(r����

e�
� ) + r���g + ��u� +

�=N�

�=0
� �=�

M�,� ,

where �

e�
� is the e�ective stress tensor, which has the ef-

fects of viscous stress tensor and turbulent stress tensor.
M�,� represents the interfacial momentum exchanged
between the phases � and �. It is usually broken into
drag force, lift force, virtual mass force, average interfa-
cial pressure and shear stress at the interface.

2.2 Population Balance Modeling

The PB-CFD coupling has proved to be well-suited to
predict polydispersed multiphase flows [5, 1, 2]. In this
work, the following inhomogeneous monovariate PBE
with an additive internal variable, x, is used:

�f(x, z, t)
�t

+ �z. [udf(x, z, t)] = S(x, z, t) + R(x, z, t),
(3)

where S(x, z, t) is an additional source term, x is an
internal variable for diameter, z is the physical space co-
ordinates and R(x, z, t) is given by the equation below:
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R(x, z, t) = Lbf(x, z, t) + Laf(x, z, t). (4)

The Lb and La are, respectively, the breakage and ag-
gregation operators.

3 PB-CFD coupling with DQBMMs

The DQBMM-PB-CFD coupling is very similar to
QBMM-PB-CFD coupling [5]. Again, each Gauss-
Christo�el quadrature node is assigned to one dispersed
phase �, and when their abscissas are the particle vol-
ume, the weighted abscissa, ��, is equivalent to its
volume fraction in an incompressible flow. Furthermore,
if the particles are considered spherical, the particle
volume can be converted into the particle diameter,
and therefore, used to calculate the interfacial force
between the continuous and dispersed phases in each
CFD cell.

4 Results and Discussions

In order to verify the PB-CFD coupling with DQBMMs,
we applied this approach with some tool models. The
DQBMM-PB-CFD code verification is carried out in a
two dimesional Backward Facing Step (BFS) geometry,
due to its simplicity and well-defined recirculation zones,
where the e�ects of particle interaction are predominant.
DQBMM-PB-CFD code, implemented in OpenFOAM,
is simulated with unrealistics problems with breakage
and aggregation kernels describe in the following.

4.1 Simultaneous breakage and aggregation

cases

The simultaneous breakage and aggregation problem
proposed by McCoy and Madras [4] is simulated to
compare the results of DQMoM, DuQMoGeM and Di-
rect DuQMoGeM using 4 moments. Regarding to the
simulations result, from Figure 1, one can see that, the
recirculation zones on the BFS is evident right after the
step. In these regions the residence time of dispersed
phase is longer and the aggregation and breakage e�ects
are higher.

Figure 1: Velocity magnitude of the dispersed phase
for breakage case with 6000 nodes mesh and
tolerance of 1 � 10�6 at 0.3 seconds.

From Figure 2, we can observe that in recirculation
zone the emulsion starts to break as was expected. This
result was represented by Silva and Lage [5] using tradi-
cional DQMoM.

Figure 2: Diameter of dispersed phase with 6000 nodes
mesh and tolerance of 1�10�6 at 0.3 seconds.

5 Conclusions

In this work, a polydispersed multiphase flow model
using dual quadrature-based moments methods were
implemented in OpenFOAM and parallelized on GPUs.
In order to verify the code, the DQBMM-PB-CFD cou-
pling were applied to an oil-water emulsion and their
results were compared to the same code using DQMoM.
The results were similar. However, we can consider that
the dual quadrature-based moments methods are more
acurate, once they can control the quadrature error
present in DQMoM.
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